

SESQUITERPENE LACTONES OF *ONOPORDON TAURICUM**

MAHMUT MISKI, ALI H. MERİÇLİ† and TOM J. MABRY‡

College of Pharmacy and †Department of Botany, University of Texas at Austin, Austin, Texas 78713, U.S.A., ‡Faculty of Pharmacy, Department of Pharmacognosy, University of Istanbul, Beyazit, Istanbul, Turkey

(Received 8 September 1987)

Key Word Index—*Onopordon tauricum*, Compositae; sesquiterpene lactones, germacranolides, elemanolides, eudesmanolides

Abstract—The chloroform extract of the leaves of *Onopordon tauricum* yielded 10 sesquiterpene lactones, including a new elemanolide and four new eudesmanolides. The structures of the new compounds were elucidated by chemical transformations and modern spectral methods.

INTRODUCTION

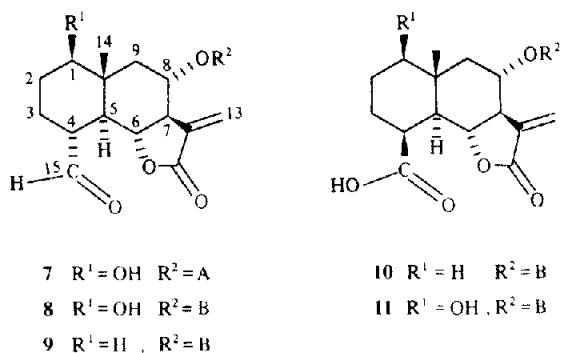
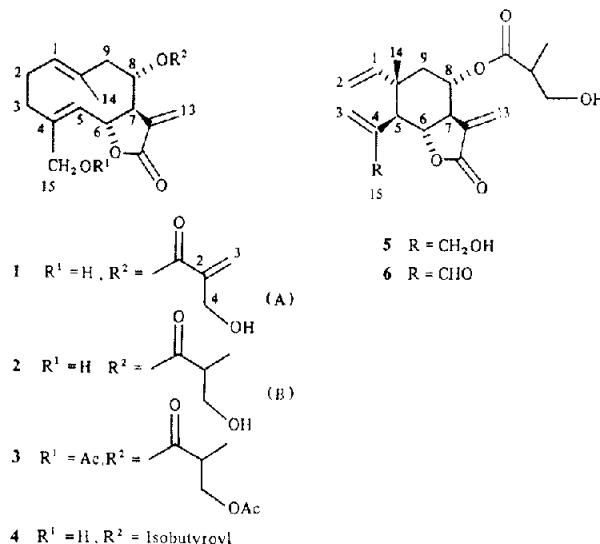
Onopordopicrin (1), an antitumour lactone [1], is the major constituent of all previously studied species of *Onopordon* (subtribe Carduinae, tribe Cynareae,) [2-4], including one European population of *O. tauricum* Willd [5]. Our chemical examination of a second population of this latter species from the Marmara region of Turkey [6], afforded five known and five new sesquiterpene lactones. While this population also yielded onopordopicrin, the main sesquiterpene lactone was onopordopicrin's 2',3'-dihydro derivative, arctiopicrin (2).

RESULTS AND DISCUSSION

The known germacranolides of the chloroform extract of the leaves of *O. tauricum* were identified as onopordopicrin (1) [3], arctiopicrin (2) [7, 8] and 4'-desoxoarctiopicrin (4) [3] based on a comparison of their published spectral and physical properties. Here we present previously unreported ¹H NMR and other spectral data for arctiopicrin, its diacetate derivative (3) and 4'-desoxoarctiopicrin (4) (see Table 1 and Experimental).

The known elemanolide, melitensin (5), was also readily identified by comparison of its spectral data with those reported previously [9]. The ¹H NMR (Table 1) and 2D homonuclear COSY spectra of the new elemanolide (6), C₁₉H₂₄O₆ (EIMS), showed close similarity in most respects to those recorded for melitensin. The main differences between the ¹H NMR spectrum of melitensin (5) and that of 6 were the presence of an aldehyde signal at δ9.46 (s) for 6 instead of a C-15 hydroxymethylene signal for 5 and more downfield chemical shifts of the H-3a and H-3b protons (at δ6.29, 6.27, both s) for 6. These small differences indicated that the C-15 hydroxymethylene group of melitensin (5) had been oxidized to an aldehyde group in 6. Except for the side chain signals, the ¹H NMR spectrum of the 2',3'-dihydro analogue of 6, which is known from *Onopordon leptolepis* [10], is almost

identical to that of 6. Finally, active manganese dioxide oxidation of melitensin (5) yielded 6 which is therefore 15-dehydromelitensin.



The other five lactones isolated from *O. tauricum* were eudesmanolides and differed from each other by their acyl groups, oxidation stages at the C-1 and C-15 positions, as well as the stereochemistry of the C-4 substituent. The first compound of this series 7 was the known lactone 8- α -(4'-hydroxymethacryloyloxy)-sonchucarpolide [11].

The ¹H NMR spectrum of the new eudesmanolide 8 (Table 1), C₁₉H₂₆O₇ (CIMS), clearly indicated the presence of the same lactone skeleton as 7, differing only in the side chain at C-8. The side chain of 8 was readily identified from characteristic ¹H NMR signals (see Table 1) and EIMS fragment ([4-hydroxysobutyrate acylum]⁺ at *m/z* 87) as a 4-hydroxybutyrate. Therefore, 8 is the 8- α -(4'-hydroxybutyroyloxy) derivative of sonchucarpolide.

The next new C-14 aldehydic eudesmanolide, 8-*O*-(4'-hydroxybutyroyl)-onopordaldehyde (9), was closely related to 8. The similarity of the ¹H NMR spectra of these two compounds, except for the absence of the C-1 hydroxyl geminal proton signal in the ¹H NMR spectrum of 9, indicated that 9 must be the C-1 desoxo derivative of 8. In accord with this observation, the CIMS of 9 displayed a molecular ion at *m/z* 351 [M + H]⁺, that is 16 mass units less than that of 8.

The remaining two eudesmanolides, 8-(4'-hydroxybutyroyl)-onopordic acid (10), C₁₉H₂₆O₇, and 8-(4'-hydroxybutyroyl)-1- β -hydroxyonopordic acid (11), C₁₉H₂₆O₈, exhibited ¹H NMR spectral data (see Table 1) similar to those of 9 and 8, respectively. The absence of the C-15 aldehydic proton signal and the coupling constant of the H-5 signals were the main differences between the ¹H NMR spectra of 9 and 10; the spectra of 8 and 11 also differed in the same way. Therefore, the C-15 aldehydic group of 9 and 8 is substituted by a carboxyl group in 10 and 11 as indicated by their IR and CIMS spectra (i.e. absorption band at 1720 cm⁻¹ and [M + H]⁺ at *m/z* 367 for 10 and at *m/z* 383 for 11). On the other hand, the coupling constant differences of the H-5

* Presented in part at the International Symposium on Medicinal Plants' Chemistry, Izmir, Turkey, May 1987.

signal observed in the 1H NMR spectrum of **9** compared to the spectrum of **10**, and the spectrum of **8** compared to that for **11**, should be related to the β -stereochemistry of the C-4 carboxyl group of the latter compounds, i.e. **10** and **11**. In order to assign the total stereochemistry of **10** and **11**, following the complete chemical shift assignment of the signals for the protons of **11** by high resolution 2D homonuclear COSY, **11** was subjected to a series of NOE differences spectroscopy experiments (Fig 1). Since the stereochemistry of the H-7 proton in eudesmanolides is accepted as α on biogenetic grounds [12], the relative stereochemistry of the other asymmetric centres of **11** to the C-7 centre should establish the absolute stereochemistry of **11**. The NOE irradiation of the H-7 signal markedly enhanced the H-5 signal and to some extent the H-9 α signal but not the H-6 and H-8 signals. The H-5 and H-9 α signals were also affected by the NOE irradiation of the H-1 signal. These experiments clearly indicated an α stereochemistry for H-1 and H-5, and a β stereochemistry for H-6 and H-8. The NOE irradiation of the H-8 signal only affected the H-6 signal, whereas the NOE irradiation of the H-6 signal enhanced both the H-8 and the C-14 methyl signals. However, the H-4 and H-5 signals were not affected by either of these two irradiations. The last two irradiations confirmed a β stereochemistry for H-6, H-8 and the C-14 methyl group.

The C-15 carboxylated lactones (i.e. compounds **10** and **11**) distinguish this population of *O. tauricum* from other species of *Onopordon*, as well as members of other related genera of the tribe Cynareae, such as *Jurinea*, *Centaurea*, *Arctium* and *Cnicus*. Furthermore, in contrast to the previously studied *Onopordon* species which mainly exhibit 8-(4'-hydroxymethacrylate) side chain-containing lactones, the sesquiterpene lactone chemistry of this population is dominated by 8-(4'-hydroxybutyrate) esterified lactones.

EXPERIMENTAL

Plant material Leaves of *Onopordon tauricum* Willd were collected from the Marmara region of Turkey between Kirklarçılı and Luleburgaz in June 1980. A voucher specimen is deposited in Herbarium, Faculty of Pharmacy, University of Istanbul (ISTE 44591).

Extraction and isolation of the compounds Air-dried and unground leaves of *O. tauricum* (890 g) were extracted with $CHCl_3$ for 20 min. The extract was concentrated to a syrup, then the concentrate was taken up in $MeOH$ and diluted with H_2O until an 80% $MeOH$ soln (ca 1 l) was obtained. The resulting soln was filtered, and then partitioned against C_6H_6 (2×200 ml). The alcohol fraction was concentrated until only H_2O remained and the resulting soln was extracted with CH_2Cl_2 (3×200 ml). The combined CH_2Cl_2 extract was dried with dry $MgSO_4$ and then concentrated to a light yellow gum (7.9 g) *in vacuo*. The gum (3.5 g) was dissolved in a minimum amount of $MeOH$ – CH_2Cl_2 (3:1) and the soln was chromatographed over a Sephadex LH-20 column (4 \times 60 cm) packed in the same solvent. One hundred 30 ml fractions were collected and each was monitored by TLC. Sesquiterpene lactone-enriched fractions were combined (2.4 g) and redissolved in a minimum amount of cyclohexane– CH_2Cl_2 – $EtOH$ (7:4:1) and then the resulting soln was chromatographed on a Sephadex LH-20 column (3 \times 50 cm) packed in same solvent system. Final purification of the compounds was made by silica gel prep TLC, 2 mm layer thickness, which were eluted with CH_2Cl_2 – C_6H_6 – $EtOAc$ – $MeCN$ (4:4:2:1, 3:3:2:1, and 2:2:2:1).

Arctiopicrin (**2**) Gum (1.45 g), EIMS (probe, 70 eV) m/z (rel int) 350 [$M]^+$ (0.2), 247 [$M - C_4H_8O_3 + H]^+$ (2.21), 228 [M

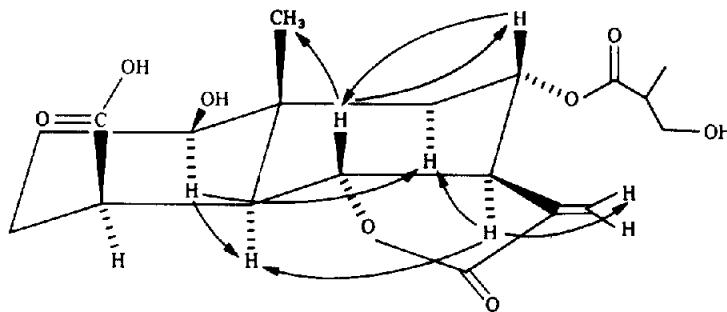


Fig. 1

Table 1 ^1H NMR spectra of compounds 2–4, 6, 8–11 (200 MHz, CDCl_3 , TMS as int standard, J in Hz in parentheses)

H	2 (<i>d</i> ₅ -Pyridine)	3	4	6	8 [(CD_3) ₂ CO + CDCl_3]	9	10	11 (500 MHz)
1a	5.03 br <i>dd</i> (4, 10.7)	5.06*	4.95* br	5.17 <i>dd</i> (10.7, 17.4)	3.39 <i>dd</i> (4.1, 11.2)		1.6–	3.95 <i>dd</i> (4.8, 11.4)
1b						1.3–		
2a	2.78* <i>m</i>	2.51* <i>m</i>	2.58* <i>m</i>	4.95 <i>d</i> (10.7)				2.18 <i>m</i>
2b	2.28 <i>m</i>	1.95–	1.9–	4.83 <i>d</i> (17.4)	1.5–	1.9 <i>m</i>	2.1 <i>m</i>	1.86 <i>m</i>
3a	2.12 <i>m</i>	2.28 <i>m</i>	2.3 <i>m</i>	6.29 <i>s</i>	1.9 <i>m</i>	1.9 <i>m</i>	2.45 <i>m</i>	2.50 <i>dt</i> (7.4, 13.9)
3b	1.92 <i>br dt</i> (5.4, 11.8)			6.27 <i>s</i>				2.39 <i>ddd</i> (1.7, 5.8, 13.9)
4					2.51 <i>m</i>	2.49 <i>m</i>		1.60 <i>m</i>
5	4.91 <i>br d</i> (9.6)	4.92*	4.80 <i>br d</i> (9.9)	3.18 <i>d</i> (12.1)	2.02 <i>t</i> (11.3)	1.89 <i>t</i> (11.3)	2.72* <i>d</i> (10.9)	2.64 <i>d</i> (10.9)
6	5.42** <i>t</i> (9.6)	4.87** <i>t</i> (9.7)	5.08** <i>t</i> (9.9)	4.39 <i>dd</i> (11.3, 12.1)	4.1 <i>t</i> (11.2)	3.87 <i>t</i> (11.2)	4.15 <i>t</i> (11.1)	4.19 <i>t</i> (11.1)
7	3.23 <i>m</i>	3.06 <i>m</i>	3.02 <i>m</i>	2.92 <i>tt</i> (3, 11.1)	2.96 <i>m</i>	2.84 <i>m</i>	2.79 <i>m</i>	2.76 <i>tt</i> (3, 11)
8	5.48** <i>m</i>	4.98** <i>m</i>	4.98** <i>m</i>	5.28 <i>dt</i> (4.3, 10.9)	5.26 <i>dt</i> (4.4, 10.8)	5.46 <i>dt</i> (4.4, 10.8)	5.22 <i>dt</i> (4.5, 10.7)	5.20 <i>dt</i> (4.5, 10.8)
9a	2.74* <i>br d</i> (11.9)	2.51*	2.52*	2.01 <i>dd</i> (4.3, 12.6)	2.46 <i>dd</i> (4.4, 12.8)	2.06 <i>dd</i> (4.4, 12.8)	2.15 <i>dd</i> (4.5, 12.7)	2.43 <i>dd</i> (4.5, 12.6)
9b	2.53 <i>br t</i> (11.9)	2.42 <i>br t</i> (11.8)	2.38 <i>br t</i> (11.6)	1.68 <i>dd</i> (10.8, 12.6)	1.32 <i>br dd</i> (11.1, 12.8)	1.28 <i>br dd</i> (11.1, 12.8)	1.52 <i>br dd</i> (11.1, 12.7)	1.42 <i>dd</i> (11.2, 12.6)
13a	6.52 <i>d</i> (3.4)	6.35 <i>d</i> (3.5)	6.32 <i>d</i> (3.5)	6.15 <i>d</i> (3.1)	6.06 <i>d</i> (3.1)	6.11 <i>d</i> (3.15)	6.12 <i>d</i> (3.1)	6.12 <i>d</i> (3.1)
13b	6.31 <i>d</i> (2.6)	5.87 <i>d</i> (2.7)	5.83 <i>d</i> (2.6)	5.73 <i>d</i> (2.8)	5.81 <i>d</i> (3.0)	5.66 <i>d</i> (2.9)	5.67 <i>d</i> (2.9)	5.66 <i>d</i> (2.95)
14	1.58 <i>br s</i>	1.50 <i>br s</i>	1.49 <i>br s</i>	1.08 <i>s</i>	1.02 <i>s</i>	1.04 <i>s</i>	0.95 <i>s</i>	0.91 <i>s</i>
15a	4.52 <i>d</i> (14)	4.28 <i>d</i> (13.9)	9.46 <i>s</i>		9.57 <i>d</i> (4)	9.64 <i>d</i> (4.2)		
15b	4.37 <i>d</i> (14)	4.06 <i>d</i> (13.9)						
2'	2.93 <i>m</i>	2.81 <i>m</i>	2.52** <i>m</i>	2.72 <i>m</i>	2.68 <i>m</i>	2.72 <i>m</i>	2.73* <i>m</i>	2.70 <i>m</i>
3'	1.30 <i>d</i> (7.1)	1.22 <i>d</i> (7.2)	1.20 <i>d</i> (7.1)	1.19 <i>d</i> (7.2)	1.15 <i>d</i> (7.1)	1.18 <i>d</i> (7.2)	1.19 <i>d</i> (7.2)	1.17 <i>d</i> (7.2)
4'a	4.13† <i>dd</i> (7.8, 10.4)	4.25† <i>dd</i> (8.7, 11)	1.15 <i>d</i> (7.1)	3.77 <i>d</i> (6.1)	3.72 <i>dd</i> † (7.6, 10.6)	3.76 <i>d</i> (6.1)	3.76 <i>d</i> (6.1)	3.75 <i>d</i> (6.1)
4'b	3.95† <i>dd</i> (5.2, 10.4)	4.1† <i>dd</i> (5.1, 11)			3.66 <i>dd</i> † (5.2, 10.6)			
-OAc			2.1, 2.03					

*.. Overlapping signals

†Centre of the A or B part of ABX signal.

$-\text{C}_4\text{H}_8\text{O}_3 - \text{H}_2\text{O}]^+$ (5.45), 150 (21.1), 147 (49.4), 105 (34.2), 91 (64.5), 87 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (15.6). Acetylation of 100 mg of 2 in 2 ml of $\text{Ac}_2\text{O} - \text{C}_5\text{H}_5\text{N}$ (1:1) at room temperature, overnight gave arctiopicrin diacetate (3) (115 mg), gum, IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 2980, 2960, 2950, 1780, 1740 (br), 1460, 1365, 1260 (sh), 1235, 1185, 1148 (sh), 1130, 1040 EIMS (probe, 70 eV) m/z (rel. int.) 306 [$\text{M} - \text{C}_6\text{H}_9\text{O}_3 + \text{H}]^+$ (0.4), 289 [$\text{M} - \text{C}_6\text{H}_{10}\text{O}_4 + \text{H}]^+$ (1), 247 [$\text{M} - \text{C}_6\text{H}_9\text{O}_3 - \text{Ac} + 2\text{H}]^+$ (11.5), 229 [$\text{M} - \text{C}_6\text{H}_{10}\text{O}_4 - \text{HOAc} + \text{H}]^+$ (32.1), 214 (12.6), 148 (49.4), 128 (100), 120 (90.2), 105 (22.8), 91 (48.6), 43 (94.3) CIMS (iso C_4H_{10} , 0.5 torr, direct probe) m/z (rel. int.) 433 [$\text{M} - \text{H}]^+$ (10.54), 349 [$\text{M} + \text{H} - 2 \times \text{Ac}]^+$ (4.37), 307 [$\text{M} + \text{H} - \text{C}_6\text{H}_9\text{O}_3 + \text{H}]^+$ (6.8), 289 [$\text{M} + \text{H} - \text{C}_6\text{H}_{10}\text{O}_4$]⁴⁺ (28.06), 229 [$\text{M} + \text{H} - \text{C}_6\text{H}_{10}\text{O}_4 - \text{HOAc}]^+$ (100).

8-O-Isobutyryl salonitenolide (4) Gum (16 mg), IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 3495, 2980, 2940, 2875, 1768, 1735, 1655, 1470, 1450, 1390, 1290, 1265, 1195, 1150, 1025, 1000, 955, 815 EIMS (probe, 70 eV) m/z (rel. int.) 334 [$\text{M}]^+$ (0.2), 247 [$\text{M} - \text{C}_4\text{H}_8\text{O}_2 + \text{H}]^+$ (13.1), 229 [$\text{M} - \text{C}_4\text{H}_8\text{O}_2 - \text{H}_2\text{O} + \text{H}]^+$ (22.2), 148 (52.3), 120 (100), 106 (28.9), 91 (62.4), 71 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (65.6)

15-Dehydromelitensin (6) Gum (12 mg), IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 3520, 3092, 2980, 2950, 2880, 2710, 1775, 1735, 1695, 1640, 1460, 1410, 1260, 1180, 1130, 1050, 1020, 970, 880, 860, 818, 760 EIMS (probe, 70 eV) m/z (rel. int.) 348 [$\text{M}]^+$ (0.46), 269 [$\text{M} - \text{C}_4\text{H}_7\text{O}_2 + \text{H}]^+$ (1.92), 244 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3$]⁺ (13.36), 226 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{H}_2\text{O}]^+$ (9.15), 215 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CHO}]^+$ (24.52), 198 (27.0), 147 (79.31), 119 (100), 105 (17.23), 91 (49.28), 87 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (27.88)

Oxidation of melitensin (5) Melitensin (15 mg) was dissolved in CH_2Cl_2 (5 ml), active MnO_2 (150 mg) was added in small portions and the suspension stirred at room temp for 1 hr. The reaction mixture was filtered through a small celite pad and the CH_2Cl_2 was evapd *in vacuo* to yield 11 mg gum. Spectral properties of the product were found to be identical with 6

8- α -(4'-hydroxybutyryloxy)-Sonchucarpolide (8) White amorphous powder (11 mg), IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 3450, 3100, 3020 (sh), 2940, 2880, 2740, 1770, 1725 (br), 1680 (sh), 1460, 1400, 1260, 1180, 1125, 970 EIMS (probe, 70 eV) m/z (rel. int.) 280 [$\text{M} - \text{C}_4\text{H}_7\text{O}_2 + \text{H}]^+$ (0.6), 262 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3$]⁺ (1.4), 252 (280 - CHO + H)⁺ (52.2), 234 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CHO} + \text{H}]^+$ (8.26), 216 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CHO} - \text{H}_2\text{O} + \text{H}]^+$ (35.04), 201 (17.94), 188 (41.34), 141 (38.06), 131 (39.35), 123 (87.55), 105 (39.22), 87 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (19.85) CIMS (iso C_4H_{10} , 0.5 torr, direct probe) m/z (rel. int.) 367 [$\text{M} + \text{H}]^+$ (11.20), 349 [$\text{M} + \text{H} - \text{H}_2\text{O}]^+$ (13.03), 339 [$\text{M} + \text{H} - \text{CHO} + \text{H}]^+$ (6.47), 337 [$\text{M} - \text{CHO}]^+$ (10.63), 281 [$\text{M} + \text{H} - \text{C}_4\text{H}_7\text{O}_2 + \text{H}]^+$ (26.88), 263 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3$]⁺ (100), 245 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{H}_2\text{O}]^+$ (60.86), 217 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{H}_2\text{O} - \text{CHO} + \text{H}]^+$ (26.04)

8-O-4'-hydroxybutyroyl)-Onopordaldehyde (9) Gum (7 mg), IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 3500, 3100, 2980 (sh), 2940, 2870, 2730, 1778, 1740 (sh), 1725, 1675 (sh), 1460, 1390, 1260, 1180, 1120, 1025, 965, 865, 815 EIMS (probe, 70 eV) m/z (rel. int.) 350 [$\text{M}]^+$ (0.2), 264 [$\text{M} - \text{C}_4\text{H}_7\text{O}_2 + \text{H}]^+$ (1.1), 246 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3$]⁺ (3.86), 236 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CHO} + \text{H}]^+$ (36.2), 218 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CHO} + \text{H}]^+$ (24.8), 174 (27.3), 146 (19.8), 134 (22.4), 126 (100), 105 (29.8), 87 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (19.9) CIMS (iso C_4H_{10} , 0.5 torr, direct probe) m/z (rel. int.) 351 [$\text{M} + \text{H}]^+$ (64.09), 265 [$\text{M} + \text{H} - \text{C}_4\text{H}_7\text{O}_2 + \text{H}]^+$ (50.36), 247 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3$]⁺ (100), 236 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{CHO} + \text{H}]^+$ (20.56), 229 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{H}_2\text{O} + \text{H}]^+$ (49.19)

8-O-(4'-hydroxybutyroyl)-Onopordic acid (10) Gum (12 mg), IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 3500, 3100, 2980, 2940, 2880, 1772, 1740 (sh), 1720, 1460, 1258, 1200, 1180, 1118, 1030, 982, 813 EIMS (probe, 70 eV) m/z (rel. int.) 280 [$\text{M} - \text{C}_4\text{H}_7\text{O}_2 + \text{H}]^+$ (0.85), 262 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3$]⁺ (1.14), 232 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CH}_2\text{O}]^+$ (31.62), 217 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{COOH}]^+$ (54.69), 204 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{C}_2\text{H}_2\text{O}_2$]⁺ (82.81), 199 (36.51), 189 (50.62), 161 (43.61), 122 (100), 105 (34.81), 87 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (17.74) CIMS (CH_4 , 0.5 torr, direct probe) m/z (rel. int.) 367 [$\text{M} + \text{H}]^+$ (2.1), 337 [$\text{M} + \text{H} - \text{CH}_2\text{O}]^+$ (84.6), 251 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{CH}_2\text{O} + \text{H}]^+$ (100), 233 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{CH}_2\text{O}]^+$ (53.42)

1- β -Hydroxy-8-O-(4'-hydroxybutyroyl)-onopordic acid (11) Gum (9 mg), IR $\nu_{\text{max}}^{\text{NaCl}}$ cm⁻¹ 3450, 3105, 3020, 2980, 2940, 2880, 1770, 1730, 1720 (sh), 1670 (sh), 1455, 1260, 1180, 1120, 1090, 1020, 975, 815 EIMS (probe, 70 eV) m/z (rel. int.) 279 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 + \text{H}]^+$ (1.34), 277 [$\text{M} - \text{C}_4\text{H}_8\text{O}_2 - \text{H}_2\text{O}]^+$ (1.19), 248 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CH}_2\text{O}]^+$ (27.38), 230 [$\text{M} - \text{C}_4\text{H}_8\text{O}_3 - \text{CH}_2\text{O} - \text{H}_2\text{O}]^+$ (22.31), 215 (19.43), 186 (100), 161 (42.33), 105 (35.89), 87 [$\text{C}_4\text{H}_7\text{O}_2$]⁺ (26.34) CIMS (iso C_4H_{10} , 0.5 torr, direct probe) m/z (rel. int.) 383 [$\text{M} + \text{H}]^+$ (1.22), 353 [$\text{M} + \text{H} - \text{CH}_2\text{O}]^+$ (100), 267 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_2 - \text{CH}_2\text{O} + \text{H}]^+$ (59.19), 249 [$\text{M} + \text{H} - \text{C}_4\text{H}_8\text{O}_3 - \text{CH}_2\text{O}]^+$ (34.48)

Acknowledgement The work in Turkey was supported by the Faculty of Pharmacy, University of Istanbul. The work at the University of Texas at Austin was supported by the National Institute of Health (Grant GM-35710), the Robert A. Welch Foundation (Grant F-130) and the Texas Advanced Technology Research Program

REFERENCES

- 1 Sticher, O (1977) in *New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity* (Wagner, H and Wolff, P, eds), p. 137 Springer, Berlin
- 2 Drozdz, B, Holub, M, Samek, Z, Herout, V and Sorm, F (1968) *Coll Czech Chem Commun* **33**, 1730
- 3 Rustaiyan, A, Nazarians, L and Bohlmann, F (1979) *Phytochemistry* **18**, 883
- 4 Khafagy, S M, Metwally, A M and Omar, A A (1977) *Pharmazie* **32**, 123
- 5 Abraham, F P, Crowfoot, D M, Joseph, A F and Osborn, E M (1946) *Nature* **158**, 744
- 6 Danin, A (1975) in *Flora of Turkey and the East Aegean Islands* Vol 5 (Davis, P H, ed) p. 356 University Press, Edinburgh
- 7 Suchy, M, Samek, Z, Herout, V and Sorm, F (1965) *Coll Czech Chem Commun* **30**, 3473
- 8 Suchy, M, Herout, V, Sorm, F, de Mayo, P, Starratt, A N and Stothers, J B (1964) *Tetrahedron Letters* 3907
- 9 Gonzalez, A G, Arteaga, J M and Breton, J L (1975) *Phytochemistry* **14**, 2039
- 10 Rustaiyan, A, Nazarians, L and Bohlmann, F (1979) *Phytochemistry* **18**, 879
- 11 Rustaiyan, A, Ahmadi, B, Jakupovic, J and Bohlmann, F (1986) *Phytochemistry* **25**, 1659
- 12 Kupchan, S M and Kelsey, J E (1967) *Tetrahedron Letters* 2863